SeeDOS Ltd - Information Factsheet

SeeDOS Ltd
26 The Maltings
Leighton Buzzard
Bedfordshire LU7 4BS
United Kingdom

Tel: +44 (0) 1525 850670
Fax: +44 (0) 1525 850685
Email: enquiries@seedos.com
Website: www.seedos.com

QUANTITATIVE QA
Explicitly designed for quality assurance of Electronic Imaging Devices and for automating the analysis of routine QA tasks

QUANTIFY THE QUALITY OF YOUR IMAGING SYSTEMS

PIPSpro helps ensure accuracy by showing you what you can’t see — the slow degradation in imager performance over time. With PIPSpro, combined with QC-3 and QCkV-1 Phantom test patterns, baselines are created that set the standard for future QA testing. Using these baselines you’ll recognize deviations in the data. That’s how you’ll know whether you should calibrate, repair or upgrade your system. Simply put, PIPSpro helps ensure your imaging systems operate at or above clinical specifications.

NEW! AUTOMATE YOUR CONE BEAM CT TESTING

PIPSpro 4.2 automatically analyzes the CATPHAN phantom and in less than a minute gives quantitative results for spatial resolution, pixel size, CT# linearity, slice thickness, contrast, noise, and image uniformity.

EASILY INCREASE YOUR STEREOTACTIC ACCURACY

The PIPSpro stereotactic module automates the process of isocenter accuracy testing by using your EPID. Images are automatically analyzed for quantitative and reproducible isocenter positioning accuracy.

MORE THAN JUST IMAGER QA

PIPSpro is more than just imager QA software. You’ll save time performing other routine QA tasks such as light field/radiation field congruence tests and star
shot analyses. Image enhancement tools specifically designed for EPID images give you more control over image quality for clinical applications. Use the PIPSpro registration tool for both patient setup and for the QA of your online patient positioning systems.

Features and Benefits

QC Module
- Automatic analysis of acquired QC-3 and QCkV-1 Phantom images provide powerful quantitative information for spatial resolution, contrast-to-noise ratio and overall noise of imaging systems.
- Automatic analysis of acquired FC-2 Phantom images provide instantaneous quantitative information for light field/radiation field congruence including values for displacement, rotation and area analysis.
- Automatic analysis of acquired star shot images provides instantaneous quantitative information for displacement caused by rotation of collimator or gantry.
- Automatic analysis of the CATPHAN phantom included with most systems capable of cone-beam CT imaging provides quantitative information for spatial resolution, pixel size, CT# linearity, slice thickness, contrast, noise, and image uniformity.

Stereotactic module
- Automatic analysis of the Winston-Lutz ball marker test utilizing EPID images gives accurate and reproducible results which can be used to adjust laser position to minimize the size of the radiation isocenter diameter.

Trending and Analysis
- Automated creation of baseline values.
- User defined time frames for trending.
- Easy to read graphical user interface.
- Warning and reject levels represented on all graphs for quick evaluation of results.
Image Handling
- Open or import many types of image files with the ability to manipulate and compare images from a variety of imaging systems
- Advanced image enhancement routines specifically designed for EPID images provide more control over image quality than most commercial systems

Image Registration
- Choose between registration routines including fiducial, template or chamfer matching
- Easy and accurate measurement of treatment setup errors with detailed results including rotational analysis
- Can be used as a QA tool for online patient positioning systems by performing an offline check of transformations

Specifications

<table>
<thead>
<tr>
<th>REF Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>91310 - PIPSpro QC™ Software with QC-3 and FC-2 Phantoms</td>
<td></td>
</tr>
<tr>
<td>91320 - PIPSpro Comprehensive™ Software with QC-3 and FC-2 Phantoms</td>
<td></td>
</tr>
<tr>
<td>91310 - PIPSpro QC™ Software with QC-3 and FC-2 Phantoms, additional site license</td>
<td></td>
</tr>
<tr>
<td>91320 - PIPSpro Comprehensive™ Software with QC-3 and FC-2 Phantoms, additional site license</td>
<td></td>
</tr>
</tbody>
</table>

Current Released Version 4.1

System Requirements

<table>
<thead>
<tr>
<th>Operating System</th>
<th>Processor</th>
<th>Memory</th>
<th>Hard Drive</th>
<th>Screen Resolution</th>
<th>CD-ROM Drive</th>
<th>Screen Color Depth</th>
<th>Product Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft® Windows® 98SE</td>
<td>Intel® or AMD®, 350 MHz or greater</td>
<td>64 MB (256 MB recommended)</td>
<td>50 MB or greater</td>
<td>800 x 600 (1024 x 768 recommended)</td>
<td>2X speed or greater</td>
<td>16-bit or greater</td>
<td>CE, Designed to meet IEC 60601-1-4</td>
</tr>
</tbody>
</table>
Publications

Quality Assurance Measurements of a-Si EPID Performance
G.V. Menon and R.S. Sloboda
Medical Dosimetry 29(1) (2004)

Clinical Use of Electronic Portal Imaging: Report of AAPM Radiation Therapy Committee Task Group 58
M.G. Herman, J.M. Balter, D.A. Jaffray, K.P. McGee, P. Munro, S. Shalev, M. Van Herk, and J.W. Wong
Medical Physics 28(5) 712 (2001)

A Quality Control Test For Electronic Portal Imaging Devices
R. Rajapakshe, K. Luchka, and S. Shalev
Medical Physics 23(7) 1237 (1996)

Assessing Radiation and Light Field Congruence with a Video Based Electronic Portal Imaging Device
K. Luchka, D. Chen, S. Shalev, G. Gluhchev, and R. Rajapakshe
Medical Physics 23(7) 1245 (1996)

Initial Comparison of Three AM-SI EPIDs Using the QC-3V Phantom
R. Clements, K. Luchka, J. Pouliot, J. Sage, and S. Shalev
7th International Workshop on Electronic Portal Imaging, Vancouver (2002)